Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 458: 114736, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-37923220

RESUMO

Food deprivation may cause neurological dysfunctions including memory impairment. The mollusk Aplysia is a suitable animal model to study prolonged food deprivation-induced memory deficits because it can sustain up to 14 days of food deprivation (14DFD). Sensitization of defensive withdrawal reflexes has been used to illustrate the detrimental effects of 14DFD on memory formation. Under normal feeding conditions (i.e., two days food deprivation, 2DFD), aversive stimuli lead to serotonin (5-HT) release into the hemolymph and neuropil, which mediates sensitization and its cellular correlates including increased excitability of tail sensory neurons (TSNs). Recent studies found that 14DFD prevents both short-term and long-term sensitization, as well as short-term increased excitability of TSNs induced by in vitro aversive training. This study investigated the role of 5-HT in the absence of sensitization and TSN increased excitability under 14DFD. Because 5-HT is synthesized from tryptophan obtained through diet, and its exogeneous application alone induces sensitization and increases TSN excitability, we hypothesized that 1) 5-HT level may be reduced by 14DFD and 2) 5-HT may still induce sensitization and TSN increased excitability in 14DFD animals. Results revealed that 14DFD significantly decreased hemolymph 5-HT level, which may contribute to the lack of sensitization and its cellular correlates, while ganglia 5-HT level was not changed. 5-HT exogenous application induced sensitization in 14DFD Aplysia, albeit smaller than that in 2DFD animals, suggesting that this treatment can only induce partial sensitization in food deprived animals. Under 14DFD, 5-HT increased TSN excitability indistinguishable from that observed under 2DFD. Taken together, these findings characterize 5-HT metabolic deficiency under 14DFD, which may be compensated, at least in part, by 5-HT exogenous application.


Assuntos
Aplysia , Serotonina , Animais , Serotonina/metabolismo , Aplysia/fisiologia , Privação de Alimentos , Neurônios Aferentes/fisiologia , Gânglios
2.
Front Microbiol ; 14: 1219261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711696

RESUMO

Lake Okeechobee is a large eutrophic, shallow, subtropical lake in south Florida, United States. Due to decades of nutrient loading and phosphorus rich sediments, the lake is eutrophic and frequently experiences cyanobacterial harmful algal blooms (cyanoHABs). In the past, surveys of the phytoplankton community structure in the lake have been conducted by morphological studies, whereas molecular based studies have been seldom employed. With increased frequency of cyanoHABs in Lake Okeechobee (e.g., 2016 and 2018 Microcystis-dominated blooms), it is imperative to determine the diversity of cyanobacterial taxa that exist within the lake and the limnological parameters that drive bloom-forming genera. A spatiotemporal study of the lake was conducted over the course of 1 year to characterize the (cyano)bacterial community structure, using 16S rRNA metabarcoding, with coincident collection of limnological parameters (e.g., nutrients, water temperature, major ions), and cyanotoxins. The objectives of this study were to elucidate spatiotemporal trends of community structure, identify drivers of community structure, and examine cyanobacteria-bacterial relationships within the lake. Results indicated that cyanobacterial communities within the lake were significantly different between the wet and dry season, but not between periods of nitrogen limitation and co-nutrient limitation. Throughout the year, the lake was primarily dominated by the picocyanobacterium Cyanobium. The bloom-forming genera Cuspidothrix, Dolichospermum, Microcystis, and Raphidiopsis were highly abundant throughout the lake and had disparate nutrient requirements and niches within the lake. Anatoxin-a, microcystins, and nodularins were detected throughout the lake across both seasons. There were no correlated (cyano)bacteria shared between the common bloom-forming cyanobacteria Dolichospermum, Microcystis, and Raphidiopsis. This study is the first of its kind to use molecular based methods to assess the cyanobacterial community structure within the lake. These data greatly improve our understanding of the cyanobacterial community structure within the lake and the physiochemical parameters which may drive the bloom-forming taxa within Lake Okeechobee.

3.
Biol Open ; 11(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36412269

RESUMO

Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.


Assuntos
Euglena , Euglena/fisiologia , Biotecnologia , Simbiose
4.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889573

RESUMO

Nanoplastic pollution is increasing worldwide and poses a threat to humans, animals, and ecological systems. High-throughput, reliable methods for the isolation and separation of NMPs from drinking water, wastewater, or environmental bodies of water are of interest. We investigated iron oxide nanoparticles (IONPs) with hydrophobic coatings to magnetize plastic particulate waste for removal. We produced and tested IONPs synthesized using air-free conditions and in atmospheric air, coated with several polydimethylsiloxane (PDMS)-based hydrophobic coatings. Particles were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) magnetometry, dynamic light scattering (DLS), X-ray diffraction (XRD) and zeta potential. The IONPs synthesized in air contained a higher percentage of the magnetic spinel phase and stronger magnetization. Binding and recovery of NMPs from both salt and freshwater samples was demonstrated. Specifically, we were able to remove 100% of particles in a range of sizes, from 2-5 mm, and nearly 90% of nanoplastic particles with a size range from 100 nm to 1000 nm using a simple 2-inch permanent NdFeB magnet. Magnetization of NMPs using IONPs is a viable method for separation from water samples for quantification, characterization, and purification and remediation of water.

5.
Harmful Algae ; 109: 102116, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34815023

RESUMO

Cyanobacterial blooms have increased in frequency, distribution, and intensity due to climate change and anthropogenic nutrient input. The release of bioactive compounds accumulated in these blooms can affect the health of humans and the environment. The co-occurrence of bioactive metabolites is well-documented in bloom samples from marine and freshwater ecosystems, with fewer reports from unialgal isolates. Cyanobacteria also are important terrestrial ecosystem components, especially in drylands, but reports on bioactive molecules from terrestrial cyanobacteria are sparse. This study determined bioactive metabolite profiles for 71 genera of cyanobacteria from seven orders isolated from freshwater (12 genera), marine (15 genera), and terrestrial (44 genera) habitats originally. Cultures were harvested for bioactive metabolites when entering the late-exponential phase for all 157 strains, and 33 were sampled at both early and late exponential phases. Bioactive metabolites were analyzed using an ultra high performance/pressure liquid chromatography in-line with a time-of-flight mass spectrometer. Overall, 12 bioactive classes of the 28 identified were ubiquitous in all samples. On average, each freshwater genus produced ∼12 bioactive classes, whereas each marine genus contained > 4 bioactive classes, and each terrestrial genus contained ∼6 bioactive classes. While 10 of 12 freshwater genera produced at least 10 bioactive classes, only a single genus each from marine and terrestrial habitats had the same number of bioactive classed accumulated. Aeruginosin was found in 58 of 71 total genera, carmabin in 51 of 71 genera, and anabaenopeptin in 48 of 71 genera. Chemotaxonomic use of these secondary metabolites may help resolve higher-level genetic classification(s). An additional growth curve experiment showed that bioactive metabolites were produced at both early and late exponential growth phases. The bioactive metabolite accumulation pattern between early and late exponential phases differed by bioactive classes, genera, and habitats. This survey of 55 bioactive classes in cyanobacteria isolated from freshwater, marine, and terrestrial habitats (71 genera) provides as one of the first systematic bioactive metabolite profiles for cyanobacteria, which should be useful in environmental and drinking water management. Further, it offers novel insights about the toxin potential of selected terrestrial cyanobacteria.


Assuntos
Cianobactérias , Ecossistema , Cromatografia Líquida de Alta Pressão , Cianobactérias/metabolismo , Água Doce/microbiologia
6.
Harmful Algae ; 101: 101969, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526185

RESUMO

Iningainema is a recently described genus of heterocytous, false-branching cyanobacteria originally described from Australia. In this work, we present Iningainema tapete sp. nov., isolated from subaerial and terrestrial environments in central Florida (USA). In comparison to the sister species, our novel cyanobacterium produces nodularin-R (NOD-R) and a methylated isoform [MeAdda3] NOD previously not reported within this genus; in addition to possessing the biosynthetic gene clusters for microcystin and anabaenopeptins production. Nodularin accumulation by this cyanobacterium exceeded 500 µg g-1 dry weight in cultures grown in nitrogen-depleted media. Such elevated toxin concentrations are alarming as the cyanobacterium was isolated from a food production greenhouse and poses a potential risk for food products and for workforce exposure. Using morphology, 16S rRNA gene phylogeny, and 16S-23S rRNA internal transcribed spacer (ITS) secondary structure, coupled with toxin detection and toxin gene presence, we provide evidence for the establishment of a novel toxic species of cyanobacteria, Iningainema tapete.


Assuntos
Cianobactérias , Microcistinas , Austrália , Cianobactérias/genética , Florida , Toxinas Marinhas , Peptídeos Cíclicos , RNA Ribossômico 16S/genética
7.
J Phycol ; 57(3): 931-940, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33454979

RESUMO

To examine the impact of heterotrophic bacteria on microalgal physiology, we co-cultured the diatom Phaeodactylum tricornutum with six bacterial strains to quantify bacteria-mediated differences in algal biomass, total intracellular lipids, and for a subset, extracellular metabolite accumulation. A Marinobacter isolate significantly increased algal cell concentrations, dry biomass, and lipid content compared to axenic algal cultures. Two other bacterial strains from the Bacteroidetes order, of the genera Algoriphagus and Muricauda, significantly lowered P. tricornutum biomass, leading to overall decreased lipid accumulation. These three bacterial co-cultures (one mutualistic, two competitive) were analyzed for extracellular metabolites via untargeted liquid chromatography mass spectrometry to compare against bacteria-free cultures. Over 80% of the extracellular metabolites differentially abundant in at least one treatment were in higher concentrations in the axenic cultures, in agreement with the hypothesis that the co-cultured bacteria incorporated algal-derived organic compounds for growth. Furthermore, the extracellular metabolite profiles of the two growth-inhibiting cultures were more similar to one another than the growth-promoting co-culture, linking metabolite patterns to ecological role. Our results show that algal-bacterial interactions can influence the accumulation of intracellular lipids and extracellular metabolites, and suggest that utilization and accumulation of compounds outside the cell play a role in regulating microbial interactions.


Assuntos
Diatomáceas , Microalgas , Bactérias , Processos Heterotróficos , Lipídeos
8.
Biology (Basel) ; 9(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707990

RESUMO

Aside from two samples collected nearly 50 years ago, little is known about the microbial composition of wind tidal flats in the hypersaline Laguna Madre, Texas. These mats account for ~42% of the lagoon's area. These microbial communities were sampled at four locations that historically had mats in the Laguna Madre, including Laguna Madre Field Station (LMFS), Nighthawk Bay (NH), and two locations in Kenedy Ranch (KRN and KRS). Amplicon sequencing of 16S genes determined the presence of 51 prokaryotic phyla dominated by Bacteroidota, Chloroflexi, Cyanobacteria, Desulfobacteria, Firmicutes, Halobacteria, and Proteobacteria. The microbial community structure of NH and KR is significantly different to LMFS, in which Bacteroidota and Proteobacteria were most abundant. Twenty-three cyanobacterial taxa were identified via genomic analysis, whereas 45 cyanobacterial taxa were identified using morphological analysis, containing large filamentous forms on the surface, and smaller, motile filamentous and coccoid forms in subsurface mat layers. Sample sites were dominated by species in Oscillatoriaceae (i.e., Lyngbya) and Coleofasciculaceae (i.e., Coleofasciculus). Most cyanobacterial sequences (~35%) could not be assigned to any established taxa at the family/genus level, given the limited knowledge of hypersaline cyanobacteria. A total of 73 cyanobacterial bioactive metabolites were identified using ultra performance liquid chromatography-Orbitrap MS analysis from these commu nities. Laguna Madre seems unique compared to other sabkhas in terms of its microbiology.

9.
Toxins (Basel) ; 11(10)2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614508

RESUMO

Lake Winnipeg (Manitoba, Canada), the world's 12th largest lake by area, is host to yearly cyanobacterial harmful algal blooms (cHABs) dominated by Aphanizomenon and Dolichospermum. cHABs in Lake Winnipeg are primarily a result of eutrophication but may be exacerbated by the recent introduction of dreissenid mussels. Through multiple methods to monitor the potential for toxin production in Lake Winnipeg in conjunction with environmental measures, this study defined the baseline composition of a Lake Winnipeg cHAB to measure potential changes because of dreissenid colonization. Surface water samples were collected in 2013 from 23 sites during summer and from 18 sites in fall. Genetic data and mass spectrometry cyanotoxin profiles identified microcystins (MC) as the most abundant cyanotoxin across all stations, with MC concentrations highest in the north basin. In the fall, mcyA genes were sequenced to determine which species had the potential to produce MCs, and 12 of the 18 sites were a mix of both Planktothrix and Microcystis. Current blooms in Lake Winnipeg produce low levels of MCs, but the capacity to produce cyanotoxins is widespread across both basins. If dreissenid mussels continue to colonize Lake Winnipeg, a shift in physicochemical properties of the lake because of faster water column clearance rates may yield more toxic blooms potentially dominated by microcystin producers.


Assuntos
Toxinas Bacterianas/análise , Cianobactérias , Microcistinas/análise , Saxitoxina/análise , Uracila/análogos & derivados , Poluentes da Água/análise , Alcaloides , Animais , Toxinas Bacterianas/genética , Bivalves , Cianobactérias/genética , Toxinas de Cianobactérias , Monitoramento Ambiental , Proliferação Nociva de Algas , Lagos/microbiologia , Manitoba , Microcistinas/genética , Filogenia , Saxitoxina/genética , Uracila/análise
10.
Harmful Algae ; 86: 139-209, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31358273

RESUMO

Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süßwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.

11.
Harmful Algae ; 83: 42-94, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31097255

RESUMO

Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süßwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.


Assuntos
Cianobactérias , Animais , Proliferação Nociva de Algas , Humanos
12.
J Phycol ; 55(3): 509-520, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30637743

RESUMO

Pleurocapsales are one of the least understood groups of cyanobacteria in terms of molecular systematics and biochemistry. Considering the high number of cryptic taxa within the Synechococcales and Oscillatoriales, it is likely that such taxa also occur in the Pleurocapsales. The new genus described in our research is the first known pleurocapsalean cryptic taxon. It produces off-flavor and a large number of bioactive metabolites (n = 38) some of which can be toxic including four known microcystins. Using a polyphasic approach, we propose the establishment of the genus Odorella with the new species O. benthonica from material originally isolated from the California Aqueduct near Los Angeles.


Assuntos
Cianobactérias , Odorantes , California , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
13.
J Nat Prod ; 81(11): 2576-2581, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30369239

RESUMO

Cyanobufalins A-C (1-3), a new series of cardiotoxic steroids, have been discovered from cyanobacterial blooms in Buckeye Lake and Grand Lake St. Marys in Ohio. Compounds 1-3 contain distinctive structural features, including geminal methyl groups at C-4, a 7,8 double bond, and a C-16 chlorine substituent that distinguish them from plant- or animal-derived congeners. Despite these structural differences, the compounds are qualitatively identical to bufalin in their cytotoxic profiles versus cell lines in tissue culture and cardiac activity, as demonstrated in an impedance-based cellular assay conducted with IPSC-derived cardiomyocytes. Cyanobufalins are nonselectively toxic to human cells in the single-digit nanomolar range and show stimulation of contractility in cardiomyocytes at sub-nanomolar concentrations. The estimated combined concentration of 1-3 in the environment is in the same nanomolar range, and consequently more precise quantitative analyses are recommended along with more detailed cardiotoxicity studies. This is the first time that cardioactive steroid toxins have been found associated with microorganisms in an aquatic environment. Several factors point to a microbial biosynthetic origin for the cyanobufalins.


Assuntos
Cianobactérias/metabolismo , Proliferação Nociva de Algas , Coração/efeitos dos fármacos , Toxinas Biológicas/toxicidade , Humanos
14.
Front Chem ; 6: 316, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30094232

RESUMO

Members of the cyanobacterial genus Trichodesmium are well known for their substantial impact on nitrogen influx in ocean ecosystems and the enormous surface blooms they form in tropical and subtropical locations. However, the secondary metabolite composition of these complex environmental bloom events is not well known, nor the possibility of the production of potent toxins that have been observed in other bloom-forming marine and freshwater cyanobacteria species. In the present work, we aimed to characterize the metabolome of a Trichodesmium bloom utilizing MS/MS-based molecular networking. Furthermore, we integrated cytotoxicity assays in order to identify and ultimately isolate potential cyanotoxins from the bloom. These efforts led to the isolation and identification of several members of the smenamide family, including three new smenamide analogs (1-3) as well as the previously reported smenothiazole A-hybrid polyketide-peptide compounds. Two of these new smenamides possessed cytotoxicity to neuro-2A cells (1 and 3) and their presence elicits further questions as to their potential ecological roles. HPLC profiling and molecular networking of chromatography fractions from the bloom revealed an elaborate secondary metabolome, generating hypotheses with respect to the environmental role of these metabolites and the consistency of this chemical composition across genera, space and time.

15.
Harmful Algae ; 74: 67-77, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29724344

RESUMO

Microcystis and Anabaena (Dolichospermum) are among the most toxic cyanobacterial genera and often succeed each other during harmful algal blooms. The role allelopathy plays in the succession of these genera is not fully understood. The allelopathic interactions of six strains of Microcystis and Anabaena under different nutrient conditions in co-culture and in culture-filtrate experiments were investigated. Microcystis strains significantly reduced the growth of Anabaena strains in mixed cultures with direct cell-to-cell contact and high nutrient levels. Cell-free filtrate from Microcystis cultures proved equally potent in suppressing the growth of nutrient replete Anabaena cultures while also significantly reducing anatoxin-a production. Allelopathic interactions between Microcystis and Anabaena were, however, partly dependent on ambient nutrient levels. Anabaena dominated under low N conditions and Microcystis dominated under nutrient replete and low P during which allelochemicals caused the complete suppression of nitrogen fixation by Anabaena and stimulated glutathione S-transferase activity. The microcystin content of Microcystis was lowered with decreasing N and the presence of Anabaena decreased it further under low P and high nutrient conditions. Collectively, these results indicate that strong allelopathic interactions between Microcystis and Anabaena are closely intertwined with the availability of nutrients and that allelopathy may contribute to the succession, nitrogen availability, and toxicity of cyanobacterial blooms.


Assuntos
Alelopatia , Anabaena/fisiologia , Proliferação Nociva de Algas/fisiologia , Microcystis/fisiologia , Nutrientes/fisiologia
16.
J Wildl Dis ; 54(1): 142-146, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28829928

RESUMO

: On 16 September 2015, a red tide ( Karenia brevis) bloom impacted coastal areas of Padre Island National Seashore Park, Texas, US. Two days later and about 0.9 km inland, 30-40 adult green tree frogs ( Hyla cinerea) were found dead after displaying tremors, weakness, labored breathing, and other signs of neurologic impairment. A rainstorm accompanied by high winds, rough surf, and high tides, which could have aerosolized brevetoxin, occurred on the morning of the mortality event. Frog carcasses were in good body condition but contained significant brevetoxin in tissues. Tissue brevetoxin was also found in two dead or dying spotted ground squirrels ( Xerospermophilus spilosoma) and a coyote ( Canis latrans) found in the area. Rainwater collected from the location of the mortality event contained brevetoxin. Green tree frog and ground squirrel mortality has not been previously attributed to brevetoxin exposure and such mortality suggested that inland toxin transport, possibly through aerosols, rainfall, or insects, may have important implications for coastal species.


Assuntos
Anuros , Coiotes , Exposição Ambiental , Toxinas Marinhas/toxicidade , Micotoxicose/veterinária , Oxocinas/toxicidade , Sciuridae , Animais , Monitoramento Ambiental , Proliferação Nociva de Algas , Ilhas , Toxinas Marinhas/química , Micotoxicose/mortalidade , Oxocinas/química , Texas
17.
Oncotarget ; 8(61): 104347-104358, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262645

RESUMO

Colorectal cancer (CRC) remains one of the most commonly diagnosed cancers and the 3rd leading cause of cancer-related mortality. The emergence of drug resistance poses a major challenge in CRC care or treatment. This can be addressed by determining cancer mechanisms, discovery of druggable targets, and development of new drugs. In search for novel agents, aquatic microorganisms offer a vastly untapped pharmacological source that can be developed for cancer therapeutics. In this study, we characterized the anti-colorectal cancer potential of euglenophycin, a microalgal toxin from Euglena sanguinea. The toxin (49.1-114.6 µM) demonstrated cytotoxic, anti-proliferative, anti-clonogenic, and anti-migration effects against HCT116, HT29, and SW620 CRC cells. We identified G1 cell cycle arrest and cell type - dependent modulation of autophagy as mechanisms of growth inhibition. We validated euglenophycin's anti-tumorigenic activity in vivo using CRL:Nu(NCr)Foxn1nu athymic nude mouse CRC xenograft models. Intraperitoneal toxin administration (100 mg/kg; 5 days) decreased HCT116 and HT29 xenograft tumor volumes (n=10 each). Tumor inhibition was associated with reduced expression of autophagy negative regulator mechanistic target of rapamycin (mTOR) and decreased trend of serum pro-inflammatory cytokines. Together, these results provide compelling evidence that euglenophycin can be a promising anti-colorectal cancer agent targeting multiple cancer-promoting processes. Furthermore, this study supports expanding natural products drug discovery to freshwater niches as prospective sources of anti-cancer compounds.

18.
Mar Drugs ; 15(7)2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665343

RESUMO

Bioassay-guided isolation of the lipophilic extract of Trichodesmium thiebautii bloom material led to the purification and structure characterization of two new hybrid polyketide-non-ribosomal peptide (PKS-NRPS) macrocyclic compounds, tricholides A and B (1 and 2). A third macrocyclic compound, unnarmicin D (3), was identified as a new depsipeptide in the unnarmicin family, given its structural similarity to the existing compounds in this group. The planar structures of 1-3 were determined using 1D and 2D NMR spectra and complementary spectroscopic and spectrometric procedures. The absolute configurations of the amino acid components of 1-3 were determined via acid hydrolysis, derivitization with Marfey's reagent and HPLC-UV comparison to authentic amino acid standards. The absolute configuration of the 3-hydroxydodecanoic acid moiety in 3 was determined using a modified Mosher's esterification procedure on a linear derivative of tricharmicin (4) and additionally by a comparison of 13C NMR shifts of 3 to known depsipeptides with ß-hydroxy acid subunits. Tricholide B (2) showed moderate cytotoxicity to Neuro-2A murine neuroblastoma cells (EC50: 14.5 ± 6.2 µM).


Assuntos
Antineoplásicos/isolamento & purificação , Peptídeos Cíclicos , Peptídeos/isolamento & purificação , Trichodesmium/química , Animais , Peptídeos Catiônicos Antimicrobianos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Neuroblastoma/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia
19.
Environ Sci Technol ; 51(12): 6745-6755, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28535339

RESUMO

Annual cyanobacterial blooms dominated by Microcystis have occurred in western Lake Erie (U.S./Canada) during summer months since 1995. The production of toxins by bloom-forming cyanobacteria can lead to drinking water crises, such as the one experienced by the city of Toledo in August of 2014, when the city was rendered without drinking water for >2 days. It is important to understand the conditions and environmental cues that were driving this specific bloom to provide a scientific framework for management of future bloom events. To this end, samples were collected and metatranscriptomes generated coincident with the collection of environmental metrics for eight sites located in the western basin of Lake Erie, including a station proximal to the water intake for the city of Toledo. These data were used to generate a basin-wide ecophysiological fingerprint of Lake Erie Microcystis populations in August 2014 for comparison to previous bloom communities. Our observations and analyses indicate that, at the time of sample collection, Microcystis populations were under dual nitrogen (N) and phosphorus (P) stress, as genes involved in scavenging of these nutrients were being actively transcribed. Targeted analysis of urea transport and hydrolysis suggests a potentially important role for exogenous urea as a nitrogen source during the 2014 event. Finally, simulation data suggest a wind event caused microcystin-rich water from Maumee Bay to be transported east along the southern shoreline past the Toledo water intake. Coupled with a significant cyanophage infection, these results reveal that a combination of biological and environmental factors led to the disruption of the Toledo water supply. This scenario was not atypical of reoccurring Lake Erie blooms and thus may reoccur in the future.


Assuntos
Microcystis , Abastecimento de Água , Canadá , Cianobactérias , Eutrofização , Lagos
20.
Harmful Algae ; 63: 79-84, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28366403

RESUMO

Euglena sanguinea is known to produce the alkaloid toxin euglenophycin and is known to cause fish kills and inhibit mammalian tissue and microalgal culture growth. An analysis of over 30 species of euglenoids for accumulation of euglenophycin identified six additional species producing the toxin; and six of the seven E. sanguinea strains produced the toxin. A phylogenetic assessment of these species confirmed most taxa were in the Euglenaceae, whereas synthesis capability apparently has been lost in the Phacus, Eutreptiella, and Discoplastis branches.


Assuntos
Euglena/metabolismo , Toxinas Marinhas/metabolismo , Piperidinas/metabolismo , Proliferação Nociva de Algas/fisiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...